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Abstract. Classification algorithms are widely applied to predict failures and detect anomalies in various application areas. It is
common to assume that the data and labels are correct when training, but this is challenging to guarantee in the real world. If
there are erroneous labels in the training data, a model can easily overfit to these, resulting in poor performance. How to handle
label noise has been previously researched, however, few works focus on label noise in anomaly detection. In this work, we
propose LDAAD, a novel algorithm framework for label de-noising for anomaly detection that combines unsupervised learning
and semi-supervised learning methods. Specifically, we apply anomaly detection to partition the training data into low-risk and
high-risk sets. We subsequently build upon ideas from cross-validation and train multiple classification models on segments of
the low-risk data. The models are used both to relabel the samples in the high-risk set and to filter the low-risk samples. Finally,
we merge the two sets to obtain a final sample set with more confident labels. We evaluate LDAAD on multiple real-world
datasets and show that LDAAD achieves robust results that outperform the benchmark methods. Specifically, LDAAD achieves
a 5% accuracy improvement over the second-best method for symmetric noise while having a minimal detrimental impact when
no label noise is present.
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1. Introduction

Anomaly detection is widely used in numerous im-
portant business areas, such as equipment status mon-
itoring [1], telecommunication network operation and
maintenance [2], data center management [3], net-
work intrusion detection [4], and financial fraud [5].
Anomaly detection is one of the key techniques to en-
hance reliability and performance and thus plays a crit-
ical role in many systems.

With the rapid development of artificial intelligence
in recent years, machine learning-based supervised
classification algorithms have become increasingly
commonly applied for anomaly detection. These al-
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gorithms all require labeled samples for training and,
with the advancement of deep neural networks, in-
creasingly large-scale datasets. In other words, large
datasets with known ground-truths are essential to
training detection models with cutting-edge perfor-
mance. However, the datasets will inevitably contain
corrupted labels [6].

Typically, samples are labeled manually by human
experts, which leads to erroneous labels naturally ma-
terializing. The information provided to the expert can
be insufficient or of poor quality, which leads to less
reliable labeling. Sometimes low-cost labels given by
non-experts are used due to labeling time and cost
considerations, however, these unavoidably contain a
higher proportion of incorrect labels. Furthermore, la-
beling is often a subjective task that introduces vari-
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ance between different experts. Corrupted labels can
also be introduced due to faulty operations or equip-
ment failures during the data collection process. We
denote any incorrectly labeled samples as a “noisy”
and the associated label as a “noisy label”.

Standard classification algorithms assume that the
training labels are clean. If a large number of noisy
samples are mixed in during training it will cause the
model to overfit to the noise, resulting in poor gener-
alization performance [7]. This is especially prevalent
for Deep Neural Networks (DNNs) due to their need
for a large amount of training data. To address this is-
sue, multiple existing studies have proposed to train
DNNs in ways robust to label noise. These methods
have successfully improved the performance when la-
bel noise is present, particularly when considering im-
age data [8,9,10,11,12]. The most common approach
is to filter the training samples and either remove
or re-label the samples believed to be incorrectly la-
beled. In contrast to image data, label noise in time-
series data has not attracted much attention. Time-
series data is prevalent in various industries and appli-
cation scenarios, and it is especially common as input
for anomaly detection. How to efficiently and robustly
filter noisy training samples in time-series data is criti-
cal in anomaly detection scenarios to allow for training
more accurate models.

For anomaly detection, there are additional chal-
lenges as compared to general supervised binary clas-
sification tasks: (i) obtaining reliable datasets, espe-
cially datasets with a sufficient number of abnormal
samples, requires huge manual efforts and is very time
consuming; (ii) anomaly detection is inherently a prob-
lem of unbalanced nature, the available samples are
thus generally extremely unbalanced. This further in-
creases the difficulty of de-noising and makes it harder
to obtain a high anomaly detection accuracy. To rec-
tify sample labels in the anomaly detection scenario, a
system that does not require any auxiliary clean sam-
ples for initialization or for learning the noise patterns
and thus can be directly applied to the collected data is
highly preferred.

In this paper, we propose LDAAD, a Label De-
noising Approach for Anomaly Detection, which
combines unsupervised learning and semi-supervised
learning to address label noise specifically in the
anomaly detection scenario. It has two components
that are applied sequentially: label anomaly detection
and noisy label cleaning. First, LDAAD performs label
anomaly detection to divide the training samples into
a low-risk and a high-risk sample set according to the

detection results. Building upon cross-validation ideas,
we train multiple anomaly classifiers with the low-risk
samples and predict the label of samples in both sets.
Any low-risk samples where the models’ predictions
frequently differ from the given label are removed. On
the other hand, for the high-risk samples, we are not
confident in the given label. The high-risk samples are
therefore re-labeled with the label with the most pre-
dictions provided that its prediction ratio is sufficiently
high. Finally, the two sets are merged to obtain a final
sample set with more confident labels.

The key contributions of this paper are summarized
as follows:

– We propose a label de-noising framework for
anomaly detection scenarios, which combines un-
supervised learning and semi-supervised learn-
ing to filter and correct training labels, named
LDAAD. It does not require any auxiliary clean
data for initialization and can be applied directly
to the collected data, thus expanding its applica-
tion scope.

– LDAAD has a generic architecture that can be
combined with most anomaly detection algo-
rithms and classification algorithms without any
adjustments required.

– The framework makes use of ideas from both
K-fold cross-validation and ensemble learning.
Building upon these simple but powerful con-
cepts, we can effectively clean the dataset and in-
crease the final model accuracy.

– We evaluate our algorithm framework on three
different anomaly classification datasets. The ex-
periments show that LDAAD mostly outperforms
the baselines, or otherwise matches their results.

The rest of the paper is organized as follows. We
start by reviewing related work in Section 2. The de-
tails of LDAAD are described in Section 3, and we
present the algorithm evaluation and its performance
in Section 4. Finally, we conclude in Section 5.

2. Related Work

2.1. Machine learning-based anomaly detection

To solve anomaly detection and fault diagnosis
problems, recent research has mainly focused on us-
ing machine learning techniques [13]. In this area, it
is common for the available data to be without labels,
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and thus requiring the use of unsupervised learning
algorithms [14,15].

However, in actual applications, to obtain better de-
tection performance or to verify the trained model,
some labeled samples are necessary during the train-
ing process. Therefore, a large amount of research has
been done on anomaly detection with semi-supervised
learning [16,17,18] and supervised learning [2,19]. For
instance, Pan et al. proposed PMADS, a system for mi-
crowave link anomaly detection in cellular networks,
which considers both network topological information
and performance data, and outputs whether the mi-
crowave link will degrade in the next day [20]. Hasan
et al. compare the performance of a variety of typical
supervised learning algorithms in predicting attacks
and abnormal problems on IoT (Internet of Things)
systems [21]. In this work, we focus on dealing with
label noise in anomaly detection scenarios.

2.2. Learning with noisy labels

Many previous studies focus on reducing the im-
pact of noisy labels during modeling and use algo-
rithms to minimize their influence. The most direct
method is to identify any noisy samples and either re-
move or correcting these to improve the data purity.
Other approaches have also been suggested, includ-
ing the use of directed graphical models [8], condi-
tional random fields [9], knowledge graphs [10]. How-
ever, these methods commonly require a clean dataset
to assist the algorithms, which is not always avail-
able in a real-world scenario. Another approach is
to design new, noise-robust loss functions. Patrini et
al. propose to correct the loss function by estimat-
ing a noise transition matrix [11], and Hendrycks et
al. improve the noise matrix by using a clean set of
data [22]. Ghosh et al. proved that under certain as-
sumptions, Mean Absolute Error (MAE) can resist la-
bel noise [23,12]. Based on this, Wang et al. propose
the symmetric cross-entropy learning approach that
augments cross-entropy with a noise robust reverse
cross-entropy term [24]. Zhang et al. propose a set of
loss functions, generalized Categorical Cross-Entropy
(CCE) and MAE, and theoretically prove that these are
noise-tolerant [25]. These modified loss functions can
commonly be directly incorporated into existing neural
network architectures to obtain better noise robustness
without any prior knowledge of the label noise distri-
bution. However, they can generally only be applied if
the classifier is a neural network, for other classifiers
these losses can not be used.

Designing a new training process is also a frequently
used approach to deal with label noise. For instance,
MentorNet [26] supervises the training of a student
network to focus on samples that it has higher con-
fidence in being correctly labeled. Co-teaching [27]
trains two networks and selects the most confident
samples in each mini-batch training cycle to exchange
with each other. Furthermore, in Co-teaching+ [28],
a difference between the two networks is maintained
by updating the networks on inconsistent data, thereby
keeping the networks diverged. Similarly, Divied-
Mix [29] trains two networks at the same time. For
each network, a Gaussian mixture model is dynami-
cally fitted to the loss distribution of each sample to
divide the training samples into labeled data (the most
likely clean samples) and unlabeled data (the most
likely noisy samples). Then, the segmented data is
used to train the other network.

Approaches for anomaly detection on unreliable
data are generally designed based on existing label de-
noising algorithms and then improved. Zhong et al.
formulate video anomaly detection as a classification
of label noise problem and propose a graph convolu-
tional network to clean label noise [30]. RAD [31] is an
algorithm framework for anomaly detection applica-
tions on noisy data. It uses an auxiliary clean dataset to
train a label quality model and to initialize an anomaly
classification model. The samples detected as clean by
the label quality model are added to the clean dataset
to update the anomaly classification model. In con-
trast, our work provides a new training framework for
anomaly detection on data with label noise without the
assistance of any clean samples.

3. LDAAD Design

In this work, we consider the problem where the
training samples contain label noise in anomaly detec-
tion applications and propose a semi-supervised label
de-noising algorithm framework, LDAAD.

Our goal is to identify all unclean samples and cor-
rect their labels. Formally, given a training set D =
{(xi, yi)}|Ni=1, where xi ∈ Rd is the feature vector of
the i-th sample, yi ∈ {1, 2, ..., C} is the given class
label, and N is the number of samples. The given la-
bel yi may be incorrect, we thus denote the ground-
truth label as y∗i . A sample (xi, yi) is denoted as clean
when yi = y∗i , in other words, we want to identify and
rectify all samples with yi ̸= y∗i .
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Fig. 1. The LDAAD framework.

The LDAAD framework is illustrated in Figure 1.
There are two main components: label anomaly detec-
tion and noisy label cleaning. In the label anomaly de-
tection component, the data is divided into two sets
according to their perceived risk, i.e., low-risk sam-
ples and high-risk samples. The noisy label clean-
ing component then trains multiple anomaly classifi-
cation models using the samples in the low-risk set
and re-labels the samples in the high-risk set using
the anomaly classification models. Finally, all samples
with high label confidence are selected from each set.

In the following, we elaborate on the two key com-
ponents. Section 3.1 presents the label anomaly detec-
tion and the noisy label cleaning is detailed in Sec-
tion 3.2.

3.1. Label anomaly detection

Based on the assumption that the samples belonging
to the same class have similarities in their feature rep-
resentations [32], we identify samples that are likely to
be incorrectly labeled with an anomaly detection algo-
rithm. The details of the label anomaly detection are
shown in Algorithm 1. The original training set D is
split into C subsets, denoted as Di, following the given
label (line 2). The label of all samples in each subset
Di is thus the same. We then apply an unsupervised

Algorithm 1 Label anomaly detection
Input:

(1) Dataset with noisy labels D;
(2) Anomaly detection algorithm AD.
Output: low-risk dataset G, high-risk dataset R.
1: G = ∅, R = ∅
2: Split D by label into {D1, D2, ..., DC}
3: for i = 1 to C do
4: Gi, Ri = AD(Di)
5: G = G ∪Gi, R = R ∪Ri

6: return G, R

anomaly detection algorithm on each subset Di (lines
3-4) and add the samples which are judged as normal
to the low-risk set G. The samples judged as abnormal
are instead added to the high-risk set R (line 5).

3.2. Noisy label cleaning

The samples in the low-risk set are filtered to re-
move any with low label confidence. For samples in
the high-risk set, we predict a new label and retain any
samples where we are highly confident in this new la-
bel being correct. The full details of the label clean-
ing procedure are delineated in Algorithm 2. The num-
ber of noisy samples in the low-risk set is believed to
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Algorithm 2 Label cleaning algorithm
Input:

(1) low-risk dataset (x, y) ∈ G, high-risk dataset x ∈
R; (2) Number of folds K; (3) Iteration times M ; (4)
Classifier CLF.
Output: Clean dataset C.
1: G′ = {0}, R′ = {[]}, C = ∅
2: for m = 1 to M do
3: Split G into {G1, G2, ..., GK}
4: for k = 1 to K do
5: G∗ = G \Gk

6: fk = CLF.fit(G∗)
7: for (xi, yi) ∈ Gk do
8: Predict y′i with fk(xi)
9: if (y′i == yi) then

10: G′(xi) = G′(xi) + 1

11: for xi ∈ R do
12: Predict y′i with fk(xi)
13: Append y′i to R′(xi)

14: for xi ∈ R do
15: cr = argmaxy′

i
{y′ | y′ ← R′(xi)}/(K ∗M)

16: if cr > thr then
17: y′i = argy′{y′ | R′(xi)}
18: C = C ∪ (xi, y

′
i)

19: for (xi, yi) ∈ G do
20: cg = G′(xi)/(K ∗M)
21: if cg > thg then
22: C = C ∪ (xi, yi)

23: return C

be less than the number of noise samples in the high-
risk set, hence, the low-risk samples are used for model
training. This assumption directly follows from the use
of the anomaly detection algorithm in the sample par-
titioning.

In Algorithm 2, we follow the K-fold cross-validation
scheme and randomly divide the low-risk set G into K
subsets (line 3). For each subset Gk ∈ {G1, G2, ..., GK},
we train an anomaly classification model fk on the re-
maining (K − 1) subsets G∗ (lines 4-6). The labels of
samples in Gk and R are predicted with fk. For each
sample (xi, yi) ∈ G, we keep count of the number of
times the predicted label y′i matches the given label yi.
For samples xi ∈ R, we instead keep track of all the
predicted values y′i (lines 7 to 13). This K-fold cross-
validation is run M times to reduce the variance in the
predictions (line 2). Subsequently, each sample in the
low-risk set G has a count of the number of times the
predicted label matches the given label recorded in G′.

The samples in R instead have an associated list in
R′ with (K ×M) predicted labels. For each sample
xi ∈ R, we identify the most common predicted label
y′i and its prediction ratio cr as follows

y′i = argmax
y′
i

{y′i | y′i ← R′(xi)},

cr =
maxy′

i
{y′i | y′i ← R′(xi)}
K ×M

,

where y′i denotes the predicted label of xi and R′(xi)
is the list of predicted labels for xi. If the prediction
ratio cr is greater than a threshold thr, the label is ac-
cepted and the sample (xi, y

′
i) is added to the clean set

C (lines 14-18).
Moreover, we only retain the samples most likely

to be clean in the low-risk set G. Since these samples
already have a reasonable given label, we consider how
many times the given label matches the predicted label
and generate a score as follows

cg =
# of predictions where y′ equal to y

K ×M
.

For each sample (xi, yi), if and only if its correspond-
ing cg value is greater than a threshold thg , we add it
to the clean set C (lines 19-22).

It is worth noting that we retain the observed labels
of the low-risk dataset G and filter them to remove
samples with low confidence. The observed labels of
the high-risk dataset R are discarded and the samples
are instead relabeled. Therefore, part of the samples in
C will retain the given label, while another part of the
samples has been relabeled.

4. Evaluation

In this section, we evaluate LDAAD’s robustness
and effectiveness. We begin by introducing the datasets
and the evaluation metrics. We then present the base-
lines and their parameter settings. We subsequently
present a performance comparison with the state-of-
the-art baselines. Finally, we demonstrate the effi-
ciency gains obtained by the various components of
LDAAD through an ablation study and a parameter
sensitivity analysis of the main model parameters.
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Table 1
Dataset summary.

Datasets |Dtrain| |Dtest| # classes N # features

Mw 18, 477 6, 159 2 274

Thermostat 14, 958 5, 050 11 115

Tasks_q 112, 500 37, 000 4 26

4.1. Datasets and evaluation metrics

We use three real-world datasets collected from dif-
ferent fields. A summary of the datasets is given in Ta-
ble 1.

Microwave (Mw) [20]: This dataset consists of 21
KPIs (Key Performance Indicators) from microwave
base stations in a cellular network. The KPIs contain
information about the performance status and health
of the microwave links in the network. The data has a
granularity of 15 minutes, and all data from 24 hours
have been merged into a single record. Each record
thus has a total of 2016 (96 × 21) values from which
274 features have been constructed. Each sample has
been marked as normal or abnormal by domain ex-
perts, and the abnormal rate is about 7%.

Thermostat [33]: The dataset contains raw network
traffic data under influence of different types of net-
work attacks. A set of 23 features has been captured,
including various statistics related to package size,
count, and jitter. By using different aggregation vari-
ables and five different-sized time windows, 115 fea-
tures are constructed. Each sample is marked as a nor-
mal operation (50%), or one of ten malicious attack
types (5% each).

Tasks_q [34]: This is a dataset collected from an op-
erational data center over 29 days. Each sample in
the dataset corresponds to a cluster task and has 26
features, including task start and end time, host ma-
chine, resource utilization, etc. We focus on four event
classes related to the termination of a task: EVICT,
FAIL, FINISH, and KILL, which corresponds to nor-
mal (FINISH) and abnormal (EVICT, FAIL and KILL)
termination states of a task. The distribution of these
four classes are: FINISH 77.8%, FAIL 0.19%, EVICT
0.02%, and KILL 22%.

In order to avoid over-fitting, we select the top 75%
samples of the Mw dataset sorted by time as training
samples, and the remaining 25% as test samples. For
the Thermostat and Tasks_q datasets, there is no time
information, hence we randomly select 75% of sam-

ples for each dataset as the training set, and use the
remaining 25% for evaluation.

To emulate label noise, we manually corrupt the
labels in the training data while keeping the test set
clean. For this purpose, we introduce a noise transition
matrix T ∈ RC×C where C is the number of classes
and Tjk = P (y = k|y′ = j) characterize the probabil-
ity of samples of the j-th class being flipped to the k-th
class. For label corruption, we use two different noise
injection methods, symmetric and asymmetric noise,
defined as follows.

Definition 1 (symmetric noise) Given noise ratio ϵ,
we define the noise transition matrix as Tjj = 1 −
ϵ, j ∈ [C], and Tjk = ϵ

C−1 , k ̸= j, k ∈ [C].

Definition 2 (asymmetric noise) Given noise ratio ϵ,
Tjj = 1−ϵ, j ∈ [C], and Tjk = ϵ, for some k ̸= j, k ∈
[C], otherwise Tjk = 0.

For symmetric noise, given a noise ratio ϵ, we uni-
formly flip the class label to one of the other classes.
This assumes that the noise is independent of the true
class label. Asymmetric noise, on the other hand, is
class-dependent and constructed to imitate real-world
noise. We flip a fraction ϵ of the labels to a similar class
where the labels are often confused (e.g., 1↔ 7, truck
→ car).

We inject noise with different proportions ϵ into
the three datasets and compare their performance.
For evaluation, we use both accuracy and PRAUC
(Precision-Recall Area Under Curve) as metrics. For
highly imbalanced datasets, accuracy alone is not
enough to judge the effectiveness of the model. This is
especially the case in the binary classification tasks, we
thus use PRAUC for performance evaluation on the bi-
nary classification dataset Mw, while accuracy is used
for the multi-classification tasks datasets Thermostat
and Tasks_q.

After using one of the de-noising methods to obtain
a set of selected samples, the samples are used as train-
ing data to train a classifier. Subsequently, we use the
trained classifier to predict the labels of the test sam-
ples and compute the evaluation metrics. Note that the
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Table 2
Test accuracy on Thermostat and Tasks_q with symmetric noise. Algorithms marked with * have been re-implemented using open-source code.

Dataset Thermostat Tasks_q
Average

Method / Noise ratio 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

RF 95.0 93.3 89.3 81.1 92.8 83.7 67.5 44.8 80.9

RAD_10* 31.9 33.5 25.2 22.1 77.9 77.8 77.8 77.8 53.0

RAD_100* 80.2 73.9 66.7 58.1 79.1 78.4 77.0 77.8 73.9

RAD_1000* 88.1 86.7 78.4 77.6 80.8 80.8 80.7 79.2 80.1

Co-teaching+* 70.1 57.4 45.5 42.1 83.1 82.6 81.1 80.4 67.8

DivideMix* 88.6 88.2 85.5 83.2 84.5 78.6 76.9 76.9 82.8

LDAAD (RF) 95.0 94.9 94.7 93.7 91.4 86.6 78.5 59.2 86.8

LDAAD (GRU) 94.5 94.5 93.7 92.9 84.1 82.5 81.4 79.1 87.8

labels in the test set are clean and no label noise has
been injected.

4.2. Baselines and parameter settings

We select three representative algorithms for han-
dling label noise as baselines in our performance
evaluation, RAD [31], Co-teaching+ [28], and Di-
videMix [29]. Furthermore, we train a random forest-
based classifier, denoted by RF, on the given samples
without using any label de-noise algorithm as a con-
trol baseline. The parameters of each method are given
below.

For LDAAD, we choose the unsupervised learning
algorithm isolation forest [14] as the default anomaly
detection algorithm (see Section 3.1). For the anomaly
classification model (see Section 3.2), we apply two
different classifiers, a random forest classifier (using
100 trees) and a GRU algorithm. The parameters are
set as follows:

– M : the number of iterations (default 5).
– K: the number of cross-validation segments in

each iteration (default 10).
– thg: high-risk sample screening threshold (de-

fault 0.7).
– thr: low-risk sample screening threshold (default
0.7).

For the baseline methods, RAD requires supplemen-
tary clean training data for initialization. We use 10,
100, and 1, 000 clean training samples in the experi-
ments for this purpose. All other method-specific pa-
rameters use their default values. For DivideMix, we
use a GRU as the classifier and keep other parameters
unchanged. For the GRU itself (used by DivideMix
and one of our LDAAD variants), we use a simple ar-

chitecture with 2 hidden layers, each of size 10. Cross-
entropy is used as the loss function. The Co-teaching+
baseline uses a 2-layer MLP with a hidden layer of size
256 using the ReLU activation function [35].

For the final training with the selected samples,
LDAAD uses the same classifier as in the label clean-
ing step, either random forest [36] or GRU [37]. Di-
videMix, Co-teaching+, and RAD all use their origi-
nal classifiers, i.e., GRU for DivideMix, MLP for Co-
teaching+, and a random forest for RAD. Note that
RAD uses an MLP in its original publication however
in our experiments it consistently gives a worse result.

4.3. Comparison with the state-of-the-art

The accuracy of LDAAD and the baseline algo-
rithms on the Thermostat and Tasks_q datasets are
shown in Table 2. The baseline RF does not attempt
to deal with label noise and is thus naturally the best
when no noise is added (ϵ = 0) since its action of not
removing or changing any labels is correct. We further-
more note that LDAAD is the second-best under this
setting with a relatively small accuracy loss, indicating
that LDAAD has a minimal detrimental effect when
the label noise is low. In contrast, the other baselines
have significant accuracy drops. For higher noise ra-
tios, LDAAD achieves a significant improvement over
the control RF baseline and, in most scenarios, out-
performs the state-of-the-art algorithms. More specifi-
cally, LDAAD obtains a significantly higher accuracy
on the Thermostat dataset compared to all baseline
algorithms. On the Tasks_q dataset, both RAD_1000
and Co-teaching+ achieves accuracies comparable to
LDAAD (GRU) for higher noise ratios (ϵ ∈ [0.4, 0.6]).

For the two LDAAD variants, i.e., using RF or GRU
as the classifier, the results are relatively equal on the
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Table 3
Test accuracy on Thermostat with asymmetric noise.

Dataset Thermostat

Method / Noise ratio 0.2 0.4 0.6

RF 94.0 89.5 77.8

RAD_10* 32.9 22.6 28.9

RAD_100* 70.5 69.3 59.8

RAD_1000* 88.7 87.9 86.7

Co-teaching+* 60.6 49.4 45.2

DivideMix* 85.4 81.2 73.8

LDAAD (RF) 94.6 92.7 81.1

LDAAD (GRU) 93.9 89.6 77.1

Thermostat dataset, with RF having a slight edge. On
the Tasks_q dataset, the GRU-based abnormal classifi-
cation model obtains higher accuracy when the noise
ratio is high, while the opposite is true for the scenario
without label noise. When considering the average of
all datasets and noise levels, LDAAD (GRU) outper-
forms LDAAD (RF) with 1% on the symmetric noise
experiments. Furthermore, LDAAD (GRU) has a 5%
relative improvement over DivideMix, the best base-
line model.

The results on the Mw dataset are shown in Figure 2.
In the absence of noise, RF and LDAAD (RF) achieves
the best classification results, both with a PRAUC of
96%, outperforming the other baselines with a large
margin. When label noise is present, RAD_1000 ob-
tains the most consistent results overall, and in addi-
tion, it achieves the highest PRAUC scores when the
noise ratio is high. For the algorithms that do not use
clean sample initialization, LDAAD (GRU) obtains the
best overall PRAUC scores. However, when the noise
ratio reaches 60%, none of these algorithms perform
well. These results imply that for the Mw dataset, the
clean label initialization used by RAD has a significant
impact and can help the algorithm better differentiate
noisy samples. However, for noise ratios of 60%, our
assumption that a majority of the samples are correctly
labeled has been broken. Label noise ratios this high
are very unusual in practice, especially for anomaly
detection due to the inherent class imbalance.

We further corrupt the labels in the Thermostat
training data with different levels of asymmetric noise.
We randomly select several classes to modify and the
labels are changed as follows: 9 → 1, 10 → 0,
3 ↔ 5, 4 → 7. The results are shown in Table 3.
Overall, LDAAD (RF) achieves the best performance
with noise ratios 0.2 and 0.4 while for 0.6, RAD_1000

0.0 0.2 0.4 0.6
noise ratio

0.5

0.6

0.7

0.8

0.9

1.0
RF

RAD10

RAD100

RAD1000

Co-teaching+

DivideMix

LDAAD(RF)

LDAAD(GRU)

Fig. 2. PRAUC results on Mw under symmetric noise.

obtains a better result. Similar to the observation on
the Mw dataset, we believe that since the noise ratio
is exceptionally high, the additional clean data initial-
ization in RAD has a greater effect. When consider-
ing all three noise ratio settings together, LDAAD (RF)
still outperforms RAD_1000 slightly, with a relative
improvement of 2%. We also note that both versions
of LDAAD significantly outperform Co-teaching+ and
DivideMix when injecting asymmetric noise.

4.4. Ablation study

We perform an ablation study to demonstrate the ef-
fectiveness of the two main components in our pro-
posed framework: the label anomaly detection (LAD)
component and the noisy label cleaning (NLC) com-
ponent.

First, we demonstrate the effectiveness of our pro-
posed label anomaly detection component in perform-
ing the initial sample partitioning. To this end, we ex-
amine the noise ratio in the low-risk set after apply-
ing the LAD component. We utilize two typical unsu-
pervised anomaly detection algorithms, isolation for-
est (iForest) and local outlier factor (LOF) [38]. The
experiment is conducted on all three datasets with in-
jected symmetric label noise with ratios 20%, 40%,
and 60%. The result is illustrated in Figure 3.

We first make the wrap-up observation that the iFor-
est algorithm achieves better overall results than the
LOF algorithm. LOF works better on the Tasks_q
dataset, but the difference is minimal. Furthermore,
iForest has significantly better performance on Ther-
mostat and for low noise ratios on Mw. Both algo-
rithms have a negligible impact on Mw with noise ra-
tios 0.4 and 0.6.
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Fig. 3. The label noise ratio in the low-risk sample set after applying the label anomaly detection component (lower is better). The original noise
ratio is indicated by the vertical line in each subfigure.

Table 4
Ablation study in terms of test accuracy on Thermostat and Tasks_q.

Dataset Thermostat Tasks_q

Noise type Sym. Asym. Sym.
Method / Noise ratio 0.0 0.2 0.4 0.6 0.2 0.4 0.0 0.2 0.4 0.6

RF 95.0 93.3 89.3 81.1 94.0 89.5 92.8 83.7 67.5 44.8

LDAAD (RF) 95.0 94.9 94.7 93.7 94.6 92.7 91.4 86.6 78.5 59.2

LAD (RF) 94.1 94.4 93.8 90.6 92.7 88.5 89.1 86.2 78.3 58.9

NLC (RF) 94.8 94.5 94.1 92.9 93.8 91.9 91.2 83.7 78.7 59.9

The LAD component has the most significant im-
pact on the Thermostat dataset. Using the iForest algo-
rithm, we observe a relative decrease in label noise of
over 50% for ϵ = 0.2 to close to 12% for ϵ = 0.6. On
the other two datasets, Mw and Tasks_q, we note that
when the noise ratio is low (i.e., 20%), the LAD com-
ponent reduces the label noise by around 2 ∼ 3% in
absolute terms. For higher label noise levels on these
two datasets, the effect decreases and is not very signif-
icant. The dataset characteristics are a possible expla-
nation for the observed behavior. These two datasets
are highly unbalanced, and with an increase in artificial
label noise, the number of incorrectly labeled samples
in the minor classes may exceed the number of cor-
rectly labeled samples. This can confuse the anomaly
detection algorithms. Nevertheless, the LAD compo-
nent does not have a higher level of label noise in the
low-risk set in any evaluated scenario, i.e., the LAD
component does not worsen the situation. In summary,
the LAD component can considerably reduce the noisy
samples in the training set while not having any ad-
verse effects in the worst case.

Furthermore, to provide more insights into how the
two components contribute to the success of LDAAD,

we show the effect of removing them one-by-one.
Specifically, we examine two variations of LDAAD as
follows:

– LAD (RF): LDAAD with the NLC component re-
moved. The final model is instead trained directly
using G obtained from Algorithm 1.

– NLC (RF): LDAAD with the LAD component re-
moved. Each sample is randomly assigned to ei-
ther R or G.

The results are shown in Table 4. First, we note that
removing any component will generally cause per-
formance degradation, highlighting the importance
of each component. Specifically, the accuracy with
only the LAD component is consistently lower than
LDAAD, with an increasing disparity for higher noise
ratios and when applying the more challenging asym-
metric noise. On the other hand, running with only
NLC has a lower performance impact, indicating that
the NLC component is more important for the final
result on the tested datasets.

As can be observed in Figure 3, the effectiveness of
LAD on the Tasks_q dataset is minimal when using
the iForest algorithm for ϵ ∈ [0.2, 0.4, 0.6]. This is re-
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Fig. 4. Parameter sensitivity analysis on Thermostat with 40% sym-
metric noise.

flected in the accuracy on Tasks_q, where the differ-
ence with and without LAD is minimal and, in some
cases, applying LAD is slightly detrimental. On the
other hand, removing LAD has a more significant per-
formance impact on the Thermostat dataset.

A considerable performance drop is observed for
higher noise ratios when both components are removed
simultaneously (equivalent to the RF baseline). Fur-
thermore, when no label noise is present, LDAAD has
a minimal adverse effect while both variations, LAD
(RF) and NLC (RF), both have larger negative impacts.
The cooperation of the two components will thus mit-
igate any adverse side effects when the data have in-
significant levels of label noise.

4.5. Parameter sensitivity analysis

We demonstrate how sensitive the result of LDAAD
is to the various parameter settings. For this purpose,
all parameters are set to their default values and kept
constant while a single parameter is adjusted. We use
LDAAD (GRU) and train on the Thermostat dataset
with 40% symmetric noise. Figure 4 shows the results
of the sensitivity analysis for each parameter. From
the figures, we can observe that higher values for K
and M will increase the performance, i.e., we obtain
a cleaner dataset when these parameters are higher.
However, higher M and K values also increase the
algorithm running time, hence, this is a trade-off be-
tween speed and accuracy.

Moreover, we can observe that the best accuracy is
obtained when the two threshold parameters thg and
thr are between 0.5 and 0.7. A higher threshold will
result in a relatively cleaner set of samples which is
often preferred. We thus select 0.7 as the default value
for both parameters.

5. Conclusion

In this paper, we propose an algorithm framework
LDAAD that fuses unsupervised and semi-supervised
learning to solve the problem of incorrectly labeled
data samples in the area of anomaly detection. The
algorithm screens out the incorrectly labeled samples
and either corrects or discards them. To this end, we
first group the samples according to the given label
class, and any abnormal samples are detected sepa-
rately within each group. Based on the anomaly detec-
tion results, we divide the dataset into two sets, low-
risk and high-risk. The low-risk samples are used as
training data for an ensemble of classifiers which we
subsequently apply to predict the labels of all sam-
ples. We then retain any low-risk samples where the
predicted label is frequently equal to the given label
while discarding the rest. The samples in the high-risk
set are either re-labeled with the most confident label
or removed. We evaluate the effectiveness of our ap-
proach on three separate anomaly detection datasets
and demonstrate that LDAAD performs better or in
line with all baselines for different noise types and
noise magnitudes.
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